Abstract

Microwave photonic sensors are promising for improving sensing resolution and speed of optical sensors. In this paper, a high-sensitivity, high-resolution temperature sensor based on microwave photonic filter (MPF) is proposed and demonstrated. A micro-ring resonator (MRR) based on silicon-on-insulator is used as the sensing probe to convert the wavelength shift caused by temperature change to microwave frequency variation via the MPF system. By analyzing the frequency shift with high-speed and high-resolution monitors, the temperature change can be detected. The MRR is designed with multi-mode ridge waveguides to reduce propagation loss and achieves an ultra-high Q factor of 1.01 × 106. The proposed MPF has a single passband with a narrow bandwidth of 192 MHz. With clear peak-frequency shift, the sensitivity of the MPF-based temperature sensor is measured to be 10.22 GHz/°C. Due to higher sensitivity and ultra-narrow bandwidth of the MPF, the sensing resolution of the proposed temperature sensor is as high as 0.019 °C.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.