Abstract

Here we propose a metasurface consisting of symmetry-broken dielectric tetramer arrays, which can generate polarization-selective dual-band toroidal dipole resonances (TDR) with ultra-narrow linewidth in the near-infrared region. We found, by breaking the C4v symmetry of the tetramer arrays, two narrow-band TDRs can be created with the linewidth reaching ∼ 1.5 nm. Multipolar decomposition of scattering power and electromagnetic field distribution calculations confirm the nature of TDRs. A 100% modulation depth in light absorption and selective field confinement has been demonstrated theoretically by simply changing the polarization orientation of the exciting light. Intriguingly, it is also found that absorption responses of TDRs on polarization angle follow the equation of Malus' law in this metasurface. Furthermore, the dual-band toroidal resonances are proposed to sense the birefringence of an anisotropic medium. Such polarization-tunable dual toroidal dipole resonances with ultra-narrow bandwidth offered by this structure may find potential applications in optical switching, storage, polarization detection, and light emitting devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call