Tire wear particles (TWPs) in stormwater runoff have been widely detected and were generally classified into microplastics (MPs). TWPs and conventional MPs can be intercepted and accumulated in stormwater filtration systems, but their impacts on filtration, adsorption and microbial degradation processes of conventional pollutants (organic matters, nitrate and ammonium) have not been clarified. TWPs are different from MPs in surface feature, chemical components, adsorption ability and leaching of additives, which might lead to their different impacts on conventional pollutants removal. In this study, five different levels of aged polyethylene MPs (PEMPs) and aged TWPs contamination in stormwater filtration systems were simulated using thirty-three filtration columns. Results showed that ultraviolet aging treatment was less influential for the aging of TWPs than that of PEMPs, the specific surface area of aged PEMPs (1.603 m2/g) was over two times of unaged TWPs (0.728 m2/g) in the same size. Aged PEMPs and aged TWPs had different impacts on conventional pollutants removal performance and microbial communities, and the difference might be enlarged with exposure duration. The intensified aged PEMPs contamination generally promoted conventional pollutants removal, whereas aged TWPs showed an opposite trend. Mild contamination (0.01% and 0.1%, wt%) of aged PEMP/TWPs was beneficial to the richness and diversity of microbial communities, whereas higher contamination of aged PEMPs/TWPs was harmful. Aged PEMPs and TWPs had different impact on microbial community structure. Overall, the study found that TWPs were more detrimental than PEMPs in filtration systems. The research underscores the need for more comprehensive investigation into the occurrence, effects and management strategies of TWPs, as well as the importance of distinguishing between TWPs and MPs in future studies.