Abstract

A comparative study explored how photoaging, ozonation aging, and Fenton aging affect tire wear particles (TWPs) and their phosphorus (P) removal in activated sludge. Aging altered TWPs' properties, increasing surface roughness, porosity, and generating more small particles, especially environmental persistent free radicals (EPFRs) in ozonation and Fenton aging. Post-aging TWPs (50 mg/L) inhibited sludge P removal significantly (p < 0.05), with rates of 44.3% and 59.6% for ozonation and Fenton aging, respectively. In addition, the metabolites involved in P cycling (poly-β-hydroxyalkanoates: PHA and glycogen) and essential enzymes (Exopolyphosphatase: PPX and Polyphosphate kinase: PPK) were significantly inhibited (p < 0.05). Moreover, TWPs led to a decrease in microbial cells within the sludge and altered the community structure, a situation exacerbated by the aging of TWPs. P-removing bacteria decreased (e.g., Burkholderia, Candidatus), while extracellular polymeric substance-secreting bacteria increased (e.g., Pseudomonas, Novosphingobium). Pearson correlation analysis highlighted EPFRs' role in TWPs' acute toxicity to microbial cells, yet, emphasizing particle size's impact on the sludge system's purification and community structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call