Abstract

Owing to stringent vehicle emission regulations and the shifting automotive landscape towards clean-energy vehicles, the emission of non-exhaust tire-wear particles and its implications for microplastic contamination have garnered substantial attention, emerging as a focal point of research interest. Unlike traditional source apportionment methods involving direct environmental sampling, this study focuses on the physical and chemical attributes of tire treads, the tread temperature changes, and the tire-wear particle emissions of three light-duty vehicles manufactured between 2011 and 2021. This study advances the understanding of the effects of tire properties on particle emissions, which provides preliminary information on low-wear tires. The results show that tire-wear particle emissions, mainly composed of ultrafine particles in terms of number, heavily depend on the elevated tread temperatures. The change in tread temperature is influenced not only by the initial tread temperature but also by tread pyrolysis characteristics. Ca, Mg, and Zn are abundantly contained in the tire tread and tire-wear particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.