The present study applied the ozonation process to degrade 2,4-di-tert-butylphenol (2,4-DTBP), an emerging micropollutant detected in typical bamboo pulp and papermaking wastewater (BPPW). The effects of various influencing factors on the degradation performance and corresponding degradation mechanism were investigated. The results showed that ozone could degrade 2,4-DTBP rapidly with a reaction rate constant of (1.80±0.05)×105 M-1·s-1. The removal efficiency of 2,4-DTBP (5mg/L) could reach 100% when the ozone dosage exceed 6mg/L in a neutral medium. The presence of coexisting chemicals in BPPW such as Cl- and HCO3- promoted the removal performance of 2,4-DTBP. In contrast, NH4+ and humic acid presented inhibition on 2,4-DTBP removal. The ozonation of 2,4-DTBP was dominated by the ozone molecule, and this was primarily attributed to electrophilic substitution and 1,3-dipolar cycloaddition reactions. Twenty-seven kinds of intermediate products were identified by UPLC-Q-TOF/MS. The variations in their productions were based on the changes in ozone dosage. The degradation pathways were proposed. The toxicity of 2,4-DTBP was weakened after ozonation. As for the ozonation of actual biochemical effluent of BPPW, the desirable treatment performance was obtained. This study proved the feasibility of ozonation and provided data basis for subsequent pilot study.