The hybrid high overtone bulk acoustic wave resonators (HBARs) consisting of a piezoelectric film transducers and gallium gadolinium garnet substrates with yttrium iron garnet films (YIG-GGG-YIG) are used for experimental excitation and detection of acoustically driven spin waves (ADSWs). Two types of HBAR transducers made of Al-ZnO-Al films (differed through the electrodes’ geometry) were deposited onto YIG-GGG-YIG trilayers with different YIG film thicknesses and doping levels and served for excitation of multimode HBAR at gigahertz frequencies. ADSWs were detected by measuring the shifts of resonant HBAR modes in a tangential external magnetic field when the conditions for magnetoelastic resonance (MER) were satisfied. It was shown that the design of the transducer with a continuous bottom electrode provides all acoustical excitation of spin waves (pure ADSWs), suppressing the additional inductive magnetic dynamics excitation due to the electrodes’ geometry. The theoretical study of the HBAR spectrum in a magnetic field showed that the resonance harmonics in the MER region can either almost continuously transfer from one to another, or decay and form an evident magnetoelastic gap. In this case, the shift of resonant frequencies can achieve several intermodal distances. The results obtained are important for applications of HBAR-based devices in spintronics and magnonics.
Read full abstract