Abstract

This study aimed to develop an optimal methodology for the design of a miniaturized, 1–3 piezoelectric composite focused ultrasound transducer. Miniaturized focused ultrasound (FUS) devices, generally guided through catheters, have received considerable attention in the biomedical and ultrasound fields as they can overcome the technical restrictions of typical FUS transducers. However, miniaturized transducers cannot readily generate a high acoustic intensity because of their small aperture sizes and the vibration mode coupling. As such, 1–3 composite transducers, having a high electromechanical coupling and efficient vibration directivity, break through the current technical restrictions. However, the systematic methodology for designing miniaturized FUS transducers has not been thoroughly discussed so far. Therefore, in this study, we designed 1–3 piezoelectric composite transducers using analytical and numerical methods. Specifically, extensive parametric studies were performed through finite element analysis under the coupled field with piezoelectricity, structural vibration, and acoustic pressure. The simulation results confirmed that the optimal design of the 1–3 composite type transducer produces much higher (>160%) acoustic pressure output at the focal point than the single-phase device. Furthermore, the array type of the interstitial transducer was predicted to produce an unprecedented acoustic intensity of approximately 188 W/cm2 under a short duty cycle (1%). This study will provide valuable technical methodology for the development of interstitial, 1–3 composite FUS transducers and the selection of optimal design parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call