Dark matter and dark energy are used as two important concepts in cosmology to explain some of the observed phenomena in the universe. Dark matter is one of the most dominant constituents of the Universe, and it influences the structural formation of the Universe through gravity, including the formation and evolution of galaxies, clusters, and the large-scale structure of the Universe. Dark energy is believed to be one of the causes of the accelerated expansion of the Universe, and its presence explains the observed phenomenon of the accelerating rate of expansion of the Universe. Although their existence has not been directly observed, people understand through the study of the structure and evolution of the universe that they play an important role in the universe. This paper first introduces the background knowledge of dark matter and its related properties and explains the reasons why three types of models, namely WIMP, axion, and sterile neutrino, are candidates for dark matter in the light of existing observations. The paper then discusses the relevant properties of dark energy and analyses the mainstream dark energy models. For the cosmological constant mode, the fine-tuning problem and cosmic coincidence problem it faces are analysed in detail. The evolution of the dark energy equation of state from the past >-1 to the present <-1 is then explained, and this is used to introduce the scalar field model involving dynamic, the Chaplygin gas model, the holographic dark energy model, and the interacting dark energy model.
Read full abstract