Abstract

Consider observing two different waves with the same frequency and wavelength. When these waves are coupled, the amplitude alternates between the two waves periodically, a phenomenon called coherent beating oscillation. Such phenomena can be seen in familiar coupled pendulums and, on a cosmic scale, neutrino oscillations: the oscillation between different types of neutrinos. In solids, on the other hand, there are various wave excitations responsible for their thermal and electromagnetic properties. Here we report the observation of coherent beating between different excitation species in a solid: phonons and magnons. By using time-resolved magneto-optical microscopy, magnons generated in Lu2Bi1Fe3.4Ga1.6O12 gradually disappear by transforming to phonons, and after a while, they return to magnons. The period of the oscillation as a function of the field is consistent with the prediction of the magnon-phonon beating. The experimental results pave a way to coherent control of magnon-phonon systems in solids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.