Abstract

 Aims: A consequent quantum mechanics was developed by rendering operators also for the charge and rest mass. In this formalism the Dirac equation was extended by applying 8-dimensional spinors for the decomposition of square root in the covariant equation of special relativity.
 Results: The charge and mass operators defined by 8–dimensional spinors commute with the Hamiltonian of electron and positron in electromagnetic field, but they do not commute for neutrino and quarks.
 Conclusions: For neutrino the expectation values of the rest mass and charge are zero allowing these particles moving with the speed of light. The momentum of neutrino commutes with the Hamiltonian thus it has a well-defined value for the three types of neutrinos explaining why the neutrinos can oscillate. For quarks neither the rest mass nor the charge operators commute with the Hamiltonian, thus the fractional charge and renormalized mass can be considered as expectation values in the hadron states. Since any charge measurements should give eigenvalues of its operator, no fractional charge can be detected excluding possibility of observing free quarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.