The presence of oil in domestic heat pumps is an obstacle toward higher efficiency, particularly for enhanced surface evaporators and for advanced concepts based on two-stage cycles. Very compact direct driven radial compressors supported on oil-free bearings represent a promising alternative. This paper presents the derivation of the specifications, the choice for an appropriate refrigerant fluid and the design of a proof of concept prototype with the various tradeoffs between the impeller characteristics to follow the seasonal heat demand, the bearing and rotordynamics for a stable operation. Heat pump simulation results, the design of the impeller as well as the layout of the experimental facility and first experimental results are presented. An impeller with a tip diameter of 20 mm has been tested at rotational speeds of up to 210 krpm reaching pressure ratios in excess of 3.3 and efficiencies above 78%. The refrigerant chosen for this first experimental approach is HFC 134a.
Read full abstract