Abstract
The study deals with an advanced four-bed mass recovery adsorption refrigeration cycle driven by low temperature heat source. The proposed cycle consists of two basic adsorption refrigeration cycle. The heat source rejected by one cycle is used to power the second cycle. Due to the cascading use of heat and cooling source, all major components of the system maintain different pressure levels. The proposed cycle utilize those pressure levels to enhance the refrigeration mass circulation that leads the system to perform better performances. The performance of the proposed cycle evaluated by the mathematical model at equilibrium condition and compared with the performance of the basic two-bed adsorption refrigeration cycle. It is seen that the cooling effect as well as COP of the proposed cycle is superior to those of the basic cycle. The performances of the cycle are also compared with those of the two-stage cycle. Results also show that though the cooling effect of the proposed cycle is lower than that of two-stage cycle for heat source temperature less than 70 °C, the COP of the cycle, however, is superior to that of two-stage cycle for heat source temperature greater than 60 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.