Abstract
In this paper, a new two-stage configuration of ejector-expansion transcritical CO 2 (TRCC) refrigeration cycle is presented, which uses an internal heat exchanger and intercooler to enhance the performance of the new cycle. The theoretical analysis on the performance characteristics was carried out for the new cycle based on the first and second laws of thermodynamics. Based on the simulation results, it is found that, compared with the conventional two-stage transcritical CO 2 cycle, the COP and second law efficiency of the new two-stage cycle are about 12.5–21% higher than that of conventional two-stage cycle. It is also concluded that, the performance of the new two-stage transcritical CO 2 refrigeration can be significantly improved based on the presented new two-stage cycle. Hence the new two-stage refrigeration cycle is a promising refrigeration cycle from the thermodynamically and technical point of views. A regression analysis in terms of evaporator and gas cooler exit temperatures has been used, in order to develop mathematical expressions for maximum COP, optimum discharge and inter-stage pressures and entrainment ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.