Two-photon imaging in the near-infrared window holds huge promise for real life biological imaging due to the increased penetration depth. All-inorganic CsPbX3 nanocrystals with bright luminescence and broad spectral tunability are excellent smart probes for two-photon bioimaging. But, the poor stability in water is a well-documented issue for limiting their practical use. Herein, we present the development of specific antibody attached water-resistant one-dimensional (1D) CsPbBr3 nanowires, two-dimensional (2D) CsPbBr3 nanoplatelets, and three-dimensional (3D) CsPbBr3 nanocubes which can be used for selective and simultaneous two-photon imaging of heterogeneous breast cancer cells in the near IR biological window. The current manuscript reports the design of excellent photoluminescence quantum yield (PLQY), biocompatible and photostable 1D CsPbBr3 nanowires, 2D CsPbBr3 nanoplatelets, and 3D CsPbBr3 nanocubes through an interfacial conversion from zero-dimensional (0D) Cs4PbBr6 nanocrystals via a water triggered strategy. Reported data show that just by varying the amount of water, one can control the dimension of CsPbBr3 perovskite crystals. Time-dependent transition electron microscopy and emission spectra have been reported to find the possible pathway for the formation of 1D, 2D, and 3D CsPbBr3 nanocrystals from 0D Cs4PbBr6 nanocrystals. Biocompatible 1D, 2D, and 3D CsPbBr3 nanocrystals were developed by coating with amine–poly(ethylene glycol)–propionic acid. Experimental data show the water-driven design of 1D, 2D, and 3D CsPbBr3 nanocrystals exhibits strong single-photon PLQY of ∼66–88% as well as excellent two-photon absorption properties (σ2) of ∼8.3 × 105–7.1 × 104 GM. Furthermore, reported data show more than 86% of PL intensity remains for 1D, 2D, and 3D CsPbBr3 nanocrystals after 35 days under water, and they exhibit excellent photostability of keeping 99% PL intensity after 3 h under UV light. The current report demonstrates for the first time that antibody attached 1D and 2D perovskites have capability for simultaneous two-photon imaging of triple negative breast cancer cells and human epidermal growth factor receptor 2 positive breast cancer cells. CsPbBr3 nanocrystals exhibit very high two-photon absorption cross-section and good photostability in water, which are superior to those of commonly used organic probes (σ2 = 11 GM for fluorescein), and therefore, they have capability to be a better probe for bioimaging applications.
Read full abstract