Abstract

Two-photon-excited fluorescence spectroscopy is a powerful tool to study the structural and electronic properties of optically active complexes and molecules. Although numerous lanthanide complexes have been characterized by two-photon-excited fluorescence in solution, this report is the first to apply such a technique to actinide compounds. Contrasting with previous observations in lanthanides, we demonstrate that the two-photon absorption properties of the complexes significantly depend on the metal (4f vs 5f), with Cm(III) complexes showing significantly higher two-photon absorption cross sections than lanthanide analogues and up to 200-fold stronger emission intensities. These results are consistent with electronic and structural differences between the lanthanide and actinide systems studied. Hence, the described methodology can provide valuable insights into the interactions between f-elements and ligands, along with promising prospects on the characterization of scarce compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.