The influence of solid-phase wall boundary condition in terms of specularity coefficient and particle–wall restitution coefficient on the flow behavior of spouted beds was investigated using two-fluid model approach in the computational fluid dynamics software FLUENT 6.3. Parametric studies of specularity coefficient and particle–wall restitution coefficient were performed to evaluate their effects on the flow hydrodynamics in terms of fountain height, spout diameter, pressure drop, local voidage and particles velocity. The numerical predictions were compared with available experimental data in the literatures to obtain the suitable values of specularity coefficient and particle–wall restitution coefficient for spouted beds. The simulated results show that the solid-phase wall boundary condition plays an important role in CFD modeling of spouted beds. The specularity coefficient has a pronounced effect on the spouting behavior and a small specularity coefficient (0.05) can give good predictions, while the particle–wall restitution coefficient is not critical for the holistic flow characteristics.
Read full abstract