Abstract

Gas–particle flow behavior in a spouted bed of spherical particles was simulated using the Eulerian–Eulerian two-fluid modeling approach, incorporating a kinetic–frictional constitutive model for dense assemblies of the particulate solid. The interaction between gas and particles was modeled using the Gidaspow drag model and the predicted hydrodynamics is compared with published experimental data. To investigate drying characteristics of particulate solids in axisymmetric spouted beds, a heat and mass transfer model was developed and incorporated into the commercial computational fluid dynamics (CFD) code FLUENT 6.2. The kinetics of drying was described using the classical and diffusional models for surface drying and internal moisture drying, respectively. The overall flow patterns within the spouted bed were predicted well by the model; i.e., a stable spout region, a fountain region, and an annular downcomer region were obtained. Calculated particle velocities and concentrations in the axisymmetric spouted bed were in reasonable agreement with the experimental data of He et al. (Can. J. Chem. Eng. 1994a, 72:229; 1994b, 72:561). Such predictions can provide important information on the flow field, temperature, and species distributions inside the spouted bed for process design and scale-up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.