Abstract

Bubbly flow is encountered in a wide variety of industrial applications ranging from flows in nuclear reactors to process flows in chemical reactors. The presence of a second phase, recirculating flow, instabilities of the gas plume and turbulence, complicate the hydrodynamics of bubble column reactors. This paper describes experimental and numerical results obtained in a rectangular bubble column 0.1 m wide and 0.02 m in depth. The bubble column was operated in the dispersed bubbly flow regime with gas superficial velocities up to 0.02 m/s. Images obtained from a high speed camera were used to observe the general flow pattern and have been processed to calculate bubble velocities, bubble turbulence parameters and bubble size distributions. Gas disengagement technique was used to obtain the volume averaged gas fraction over a range of superficial gas velocities. A wire mesh sensor was applied, to measure the local volume fraction at two different height positions. Numerical calculations were performed with an Eulerian–Eulerian two-fluid model approach using the commercial code CFX. The paper details the effect of various two-fluid model interfacial momentum transfer terms on the numerical results. The inclusion of a lift force was found to be necessary to obtain a global circulation pattern and local void distribution that was consistent with the experimental measurements. The nature of the drag force formulation was found to have significant effect on the quantitative volume averaged void fraction predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.