The common envelope phase in binary star systems is simulated using the 3-D moving-mesh hydrodynamic code MANGA. The companion object is modeled as a moving boundary condition in our simulations. We outline the methodology of implementing moving boundary conditions into MANGA, which are reactive to hydrodynamic and gravitational forces. The generation of initial conditions for our simulations is discussed, which must be modified near the location of the companion. We show that the size of the companion has a significant effect on the dynamics of the spiral-in, particularly with regard to the orbital separation and eccentricity. We note that our results are sensitive to the spatial resolution of our simulations. We conclude that the finite size of the companion object must be taken into account in future simulations of common envelope evolution.
Read full abstract