Abstract
The generation of gravitational waves from a post-Newtonian source endowed with a quantum spin, modeled by the Weyssenhoff fluid, is investigated in the context of Einstein–Cartan theory at the first post-Newtonian level by resorting to the Blanchet–Damour formalism. After having worked out the basic principles of the hydrodynamics in Einstein–Cartan framework, we study the Weyssenhoff fluid within the post-Newtonian approximation scheme. The complexity of the underlying dynamical equations suggests to employ a discrete description via the point-particle limit, a procedure which permits the analysis of inspiralling spinning compact binaries. We then provide a first application of our results by considering binary neutron star systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The European physical journal. C, Particles and fields
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.