Abstract This paper studies the spatio-temporal dynamics of a diffusive plant-sulphide model with toxicity delay. More specifically, the effects of discrete delay and distributed delay on the dynamics are explored, respectively. The deep analysis of eigenvalues indicates that both diffusion and delay can induce Hopf bifurcations. The normal form theory is used to set up an exact formula that determines the properties of Hopf bifurcation in a diffusive plant-sulphide model. A sufficiently small discrete delay does not affect the stability and a sufficiently large discrete delay destabilizes the system. Nonetheless, a sufficiently small or large distributed delay does not affect the stability. Both delays cause instability by inducing Hopf bifurcation rather than Turing bifurcation.