Abstract
We investigate spatiotemporal pattern formation in cancer growth using discrete time and space variables. We first introduce the coupled map lattices (CMLs) model and provide a dynamical analysis of its fixed points along with stability results. We then offer parameter criteria for flip, Neimark–Sacker, and Turing bifurcations. In the presence of spatial diffusion, we find that stable homogeneous solutions can experience Turing instability under certain conditions. Numerical simulations reveal a variety of spatiotemporal patterns, including patches, spirals, and numerous other regular and irregular patterns. Compared to previous literature, our discrete model captures more complex and richer nonlinear dynamical behaviors, providing new insights into the formation of complex patterns in spatially extended discrete tumor models. These findings demonstrate the model’s ability to capture complex dynamics and offer valuable insights for understanding and treating cancer growth, highlighting its potential applications in biomedical research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.