Abstract

This paper is concerned with a classical two-species prey–predator reaction–diffusion system with ratio-dependent functional response and subject to homogeneous Neumann boundary condition in a two-dimensional rectangle domain. By analyzing the associated eigenvalue problem, the spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of system at the constant coexistence equilibrium are established. Then when the bifurcation parameter is in the interior of range for Turing instability and near Turing bifurcation curve, the amplitude equations of the original system near the constant coexistence equilibrium are obtained by multiple-scale time perturbation analysis. On the basis of the obtained amplitude equations, the stability and classifications of spatiotemporal patterns of the original system at the constant coexistence equilibrium are discussed. Finally, to verify the validity of the obtained theoretical results, numerical simulations are also carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.