Rigorous quantum scattering calculations on ultracold molecular collisions in external fields present an outstanding computational problem due to strongly anisotropic atom-molecule interactions that depend on the relative orientation of the collision partners, as well as on their vibrational degrees of freedom. Here, we present the first numerically exact three-dimensional quantum scattering calculations on strongly anisotropic atom-molecule (Li+CaH) collisions in an external magnetic field based on the parity-adapted total angular momentum representation and a new three-dimensional potential energy surface (PES) for the triplet Li-CaH collision complex using the unrestricted coupled cluster method with single, double and perturbative triple excitations [UCCSD(T)] and a large quadruple-zeta type basis set. We find that while the full three-dimensional treatment is necessary for the accurate description of Li ($M_S=1/2$)+CaH ($v=0,N=0,M_S=1/2$) collisions as a function of magnetic field, the magnetic resonance density and statistical properties of spin-polarized atom-molecule collisions are not strongly affected by vibrational degrees of freedom, justifying the rigid-rotor approximation used in previous calculations. We observe rapid, field-insensitive vibrational quenching in ultracold Li ($M_S=1/2$)+CaH ($v=1,N=0, M_S=1/2$) collisions, leading to efficient collisional cooling of CaH vibrations.
Read full abstract