Abstract

The reaction between ferrocenium and trimethylphosphine was studied using density functional theory (DFT), domain-based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)), and N-electron valence state perturbation theory (NEVPT2). The accuracy of the DFT functionals decreases compared to the DLPNO-CCSD(T) level in the following order: M06-L > TPSS > M06, BLYP > PBE, PBE0, B3LYP > > PWPB95 > > DSD-BLYP. The roles of thermochemical, continuum solvation (SMD), and counterpoise corrections were evaluated. Grimme's D3 empirical dispersion correction is essential for all functionals studied except M06 and M06-L. The reliability of the frequency calculations performed directly within the SMD was confirmed. The systems showed no significant multireference character according to T1 and T2 diagnostics and the fractional occupation number (FOD) weighted electron density analysis. The multireference NEVPT2 calculations gave qualitatively valid conclusions about the reaction mechanism. However, a multireference approach is generally not recommended because it requires arbitrary chosen active spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.