This study is to assess the hydrogeochemical characteristics of groundwater at the deltaic region of the Nakdong River Basin in the Busan Metropolitan City of Korea. The study area is covered by the Quaternary sedimentary deposits and the Cretaceous granites associated with unconformity. The thick sedimentary deposits consists of two aquifers, i.e., unconfined and confined aquifers on the basis of clay deposit. Groundwater samples were collected from seven boreholes: two from unconfined aquifer and five from confined aquifer systems during the wet season of 2017year. ORP and DO indicates thatthe groundwater of the unconfined aquifer exists in the oxidization condition and that of the confined aquifer pertains in the reduction condition. Piper's trilinear diagram shows CaSO4 type for groundwater of the unconfined aquifer, and NaCl type for that of the confined aquifer. Ionic concentrations of groundwater increase in the confined aquifer because of direct and reverse ion exchange processes. Carbonate weathering and evaporation are other mechanisms in the water-rock interaction. Saturation indices of dolomite and calcite are observed as oversaturated, while halite reveals undersaturation. Hierarchical cluster analysis (HCA) exhibitsthat cluster 1 and cluster 2 represents the properties of groundwater in unconfined and confined aquifers, respectively. Factor analysis shows that groundwater of the confined aquifer is much influenced by seawater, and includes heavy metals of iron and aluminum. Groundwater samples in unconfined and confined aquifers are located at the rock weathering and evaporation zones in the Gibbs diagram. Inverse geochemical modeling of PHREEQC code suggests that carbonate dissolution and ion exchange of major ions are the prevailing geochemical processes. This comprehensive research provides the distinguished hydrogeochemical characteristics of groundwater in confined and unconfined aquifer systems of the Nakdong River Basin in Busan City, Korea.
Read full abstract