An NMR experiment is designed for accurate and robust measurement of transverse relaxation rates of degenerate 1H transitions in selectively 13CH3-labeled, deuterated small proteins. The measurement is based on the use of acute (<90°) angle 1H radio-frequency pulses and relies on selection of the slow- and fast-relaxing components of methyl magnetization following the relaxation period in separate experiments. The R2 decay series recorded with selection of the fast-relaxing components serves as a useful complement to the R2 series acquired with selection of the slow-relaxing part, and permits the extension of the range of relative contributions of the fast- and slow-relaxing parts to apparent signal decay. The approach is experimentally verified on 13CH3 methyl groups of the ILV-{13CH3}-labeled protein ubiquitin at 10 °C and 25 °C. The obtained methyl 1H relaxation rates are in remarkably good agreement with the values obtained from well-established NMR techniques.
Read full abstract