Abstract
The study of protein hydration by time-domain NMR is complicated by the great number of interactions involved, resulting from the presence of several amino acids and the possible modifications produced by the various structures. Moreover, a good comprehension of the molecular interactions of the simple amino acids in solution is essential to elucidate the mechanism of the biological functions of proteins. Measurements of transverse relaxation rates of the protons of water (R(2) = 1/T(2)) in aqueous solutions of amino acids such as L-glycine, L-asparagine, L-arginine and L-tryptophan were carried out in order to study the effects of chemical exchange and molecular diffusion on the amplitude of R(2). The values of R(2) measured by the Carr-Purcell-Meiboom-Gill (CPMG) sequence were studied while varying the solution pH and the parameters of the CPMG sequence. The dependence of R(2) on pH and tau (inter-pulse delay between the first and the second pulses of the CPMG sequence) is interpreted in terms of chemical exchange between the protons of water and those of the labile amino acid groups. This interpretation was confirmed by the analysis of the proton spectra acquired using a 300 MHz NMR spectrometer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.