Abstract

A clinical magnetic resonance imaging (MRI) system was used to measure proton transverse relaxation rates (R2) in agar gels with varying concentrations of ferrimagnetic iron oxide nanoparticles in a field strength of 1.5 T. The nanoparticles were prepared by coprecipitation of ferric and ferrous ions in the presence of either dextran or polyvinyl alcohol. The method of preparation resulted in loosely packed clusters (dextran) or branched chains (polyvinyl alcohol) of particles containing of the order of 600 and 400 particles, respectively. For both methods of particle preparation, concentrations of ferrimagnetic iron in agar gel less than 0.01 mg ml−1 had no measurable effect on the value of R2 for the gel. The results indicate that MRI-based R2 measurements using 1.5 T clinical scanners are not quite sensitive enough to detect the very low concentrations of nanoparticulate biogenic magnetite reported in human brain tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.