Tungsten targets are exposed to controlled sequences of D2 and He, and He and D2 plasma in the Pisces-A linear plasma device, with a view to studying the outward and inward transport of D across a He implanted surface, using thermal desorption mass spectrometry. Differences in transport are interpreted from changes in peak desorption temperature and amplitude for D2 release, compared against that of control targets exposed to just D2 plasma. Desorption data are modeled with Tmap-7 to infer the nature by which He leads to the ‘reduced inventory’ effect for H isotope uptake. A dual segment (surface-30 nm, bulk) W Tmap-7 model is developed, that simulates both plasma exposure and thermal desorption. Good agreement between desorption data and model is found for D2 release from control targets provided that the implanted flux is reduced, similar to that reported by others. For He affected release, the H isotope transport properties of the surface segment are adjusted away from control target bulk values during the computation. Modeling that examines outward D transport through the He implanted layer suggests that a permeation barrier is active, but bubble induced porosity is insufficient to fully explain the barrier strength. Moderately increased diffusional migration energy in the model over the He affected region, however, gives a barrier strength consistent with experiment. The same model, applied to inward transport, predicts the reduced inventory effect, but a further reduction in the implanted D flux is necessary for precise agreement.
Read full abstract