Abstract

An influence of radiation-induced damage on hydrogen isotope retention and transport in a bulk tungsten (W), dense nano-structured W coatings and Eurofer was investigated under well-defined laboratory conditions. Radiation-induced defects in W materials and Eurofer were created by irradiation with 20MeVW ions. Following the damage production, samples were exposed to low-energy deuterium plasma. The deuterium (D) retention in each sample was subsequently measured by nuclear reaction analysis (NRA) for the depth profiling up to 6μm. It was shown that the D retention at radiation-induced damage is almost equivalent for different W grades after irradiation at high enough fluence. The kinetic of D migration and trapping in damaged area as well as recovery of radiation-induced damage were investigated by loading at different temperatures. It was shown that deuterium retention in tungsten in fusion environment will be dominated by radiation-induced effect in a wide range of investigated temperatures, namely, from room temperature to 1100K. Whereas displacement damage produced in Eurofer has less pronounced effect on the deuterium accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call