Abstract

Influence of helium (He) on the deuterium (D) retention in tungsten (W) under simultaneous He-D plasma exposure was investigated. Bulk polycrystalline tungsten and two W coatings on carbon substrate, namely, plasma-sprayed tungsten and combined magnetron-sputtered and ion implanted tungsten (CMSII-W) were exposed to pure and He-seeded D plasmas generated by electron-cyclotron-resonance plasma source. The D retention in each sample was subsequently analyzed by various methods such as nuclear reaction analysis for the D depth profiling up to 6 μm and thermal desorption spectroscopy for the determination of total amount of D retention. It is shown that seeding of helium into D plasma with helium ion flux fraction of 10% reduces the deuterium retention for all tungsten grades but more significant reduction was observed for polycrystalline W and less significant effect was found for W coatings. From the thermal desorption spectroscopy measurements, we conclude that the presence of He modifies the density of existing traps for D but does not modify the nature of traps. Maximum effect of a reduction in the deuterium retention due to helium seeding was observed at around 500 K for bulk polycrystalline W. Mechanisms of deuterium retention and He effect in different W materials are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.