The trend in automotive, aircraft, and marine industries is the increasing use of sheet materials to reduce weight in components and optimize materials performance. Welding is the main fabrication and assembly process in many of these industrial applications. However, in using thin-shell structures in such applications, welding may results in significant residual stresses and out-of-plane distortion. Transient thermal stresses, residual stresses, and distortion sometimes cause cracking and mismatching of joints. High tensile residual stresses are undesirable since they can contribute to fatigue failure. The analysis and measurement of temperature and stresses in component are often too complex to conduct in practise, and thus finite element models provide feasible approach to examine these matters. In this paper, finite element analysis has been performed using the ANSYS package to study the behaviour of longitudinal residual stress and strain in a welded thin aluminium-manganese alloy. The model presented simulates conventional welding and welding with the introduction of welding mitigation technique for enhancement of heat transfer, in which a trailing heat sink was applied. The thermal profiles obtained using the mitigation technique is completely different from those obtained in the conventional cooling. The localized transient residual stress and through-thickness strain after applying a cooling sink are discussed. The transient residual stress behaviour was highly affected by the modified temperature distribution and magnitude due to introducing the heat transfer enhancement.
Read full abstract