A one-dimensional, transient and thermal degradation model for predicting responses of composite materials when are exposed to the fire is presented. The presented model simulates ablation of composites with different layers of materials and considers material properties as functions of temperature. The reactions are modeled by using Arrhenius-type parameters and density-temperature diagrams which are obtained by specific experimental techniques such as thermogravimetric analysis. This transient thermal model has been implemented in form of a computer code by means of new numerical methods in order to predict the temperature distribution in the liner, the amount of char and erosion, and the liner thickness variations with time. By using implemented computer code, ablation phenomena in a glass-filled phenolic composite has been simulated with the same parameters of a similar experiment. The results are in a good agreement with the experimental data and the model can successfully be used in the design of thermal protection shields as an aid of material and thickness selection.
Read full abstract