Abstract

Mitochondrial antiviral signaling protein (MAVS) is an essential adaptor molecule that is responsible for antiviral signaling triggered by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), leading to the induction of type I interferon in innate immunity. Previous studies have shown that certain viruses evade the innate immune response by cleaving the MAVS protein. However, little is known about how MAVS is regulated in response to foreign RNA, including both single-stranded (ss) and double-stranded (ds) RNA, because most previous reports have shown that the cleavage of MAVS is executed by proteases that are induced or activated by the invading RNA viruses. Here, we report that MAVS mRNA is degraded in response to polyinosinic-polycytidylic acid (polyI:C), a synthetic dsRNA, in A549 cells. RNA interference (RNAi) experiments revealed that both ssRNA- and dsRNA-associated pattern-recognition receptors (PRRs) were not involved in the degradation of MAVS mRNA. Foreign RNA also induced the transient degradation of the MAVS protein. In the resting state, the MAVS protein was protected from degradation by interferon regulatory factor 3 (IRF3); moreover, the dimerization of IRF3 appeared to be correlated with the rescue of protein degradation in response to polyI:C. The overexpression of MAVS enhanced interferon-β (IFN-β) expression in response to polyI:C, suggesting that the degradation of MAVS contributes to the suppression of the hyper-immune reaction in late-phase antiviral signaling. Taken together, these results suggest that the comprehensive regulation of MAVS in response to foreign RNA may be essential to antiviral host defenses.

Highlights

  • The antiviral defense system consists of innate and adaptive immunity

  • We initially found that the introduction of polycytidylic acid (polyI):C, a synthetic viral doublestranded RNA analog, significantly down-regulated the expression of mitochondrial antiviral signaling protein (MAVS) mRNA in A549 cells

  • new castle disease virus (NDV) infection significantly down-regulated the level of MAVS mRNA (Fig. 3B) These results suggested that the effect of viral infection on MAVS mRNA down-regulation differs among RNA viruses

Read more

Summary

Introduction

The antiviral defense system consists of innate and adaptive immunity. The innate immune system is the initial reaction of mammalian cells against invading pathogens. The recognition of pathogen-associated molecular patterns (PAMPs) on the surface of the pathogens by pattern recognition receptors (PRRs) is the key to the activation of the inherent innate immune response [1]. Among the PRRs, retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), including RIG-I [2], melanoma differentiation-associated gene-5 (MDA-5) [3] and laboratory of genetics and physiology 2 (LGP2) [4], are expressed in various types of cells. The exposed CARDs interact with a downstream adaptor molecule, mitochondrial antiviral signaling protein (MAVS) [6], which is known as virus-induced signaling adaptor (VISA) [7], interferon (IFN)-b promoter stimulator-1 (IPS-1) [8] and caspase activation and recruitment domain adaptor inducing IFN-b (Cardif) [9]. The coordinated activation of IRF3 and NF-kB eventually induces the secretion of type I IFNs and pro-inflammatory cytokines that have antiviral activities [11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.