BackgroundParaquat (PQ) from agricultural waste cause contamination in water bodies, groundwater, soil, and foods has received increasing attention regarding health safety. On-site-based detection is much needed along with rapid results, selectivity and sensitivity, which can be achieved through an electrochemical-based sensor. MethodsThis work provides, an electrochemical sensor based on zinc cobaltite (ZnCo2O4) nanostructure strongly attracted through electrostatic interaction with the carbon nitride (C3N5; CN) nanosheets modified on a glassy carbon electrode (GCE) for the determination of paraquat (PQ). The strong immobilization of ZnCo2O4 over CN2 on GCE synergistically shows excellent sensing of PQ due to high interfacial charge transfer effect. Significant findingsIn addition, the electrochemical studies were performed using CV and DPV analysis which exhibits a good limit of detection (7.6 nM) and sensitivity (0.201 µA cm-2) towards PQ detection. Furthermore, the modified electrode was applied practically in real food samples for PQ detection with excellent recoveries.
Read full abstract