Transcriptional activity of NF-kappaB is inhibited by the liganded glucocorticoid receptor (GR), which exists mainly in two splice variants as functional GRalpha and nonfunctional GRbeta. We investigated the effect of 5-aza-2'-deoxycytidine (5-dAzaC), trichostatin A (TSA), and sodium butyrate (NaBu) on GRalpha,GRbeta and ASF/SF2 splicing factor expression in HT-29 colon and MCF-7 breast carcinoma cells. HT-29 and MCF-7 cells were cultured in the absence or in the presence of 5-dAzaC, TSA, and NaBu, followed by RNA and protein isolation. The transcript and protein levels of GRalpha, GRbeta ASF/SF2 were determined by reverse transcription, real-time quantitative PCR and Western blot analysis. We found that 5-dAzaC, TSA, and NaBu lead to an increase in GRalpha and ASF/SF2 transcript levels and a decrease in GRbeta transcript levels in HT-29 and MCF-7 cells. The 5-dAzaC, TSA, and NaBu resulted in increased GRalpha and ASF/SF2 protein levels and GRbeta protein downregulation in HT-29 cells. The most increased GRalpha protein expression in MCF-7 cells was observed with NaBu. However, all of these compounds inhibited GRbeta protein expression in MCF-7 cells. The MCF-7 cells treated with NaBu demonstrated a remarkable increase in ASF/SF2 protein expression. Because NF-kappaB is considered to be a factor in the augmentation of malignant properties of cells, treatment of tumors with 5-dAzaC, TSA, and NaBu may provide a novel approach to the enhancement of therapeutic effects of glucocorticoids in epithelial carcinomas.
Read full abstract