In order to establish the mapping relationship between architectural design parameters and building performance and optimize architectural design parameters, an architectural design optimization method based on BP neural network is proposed. The selected main design parameters of building ventilation include spacing coefficient, air outlet area, and height from the bottom of the window sill to the ground. Take the comprehensive performance of building ventilation design as the main optimization objective to optimize the building design. First, nine groups of samples of building optimization design are obtained through uniform experimental design. Then, based on the architectural design sample data obtained by BP neural network training, the mapping relationship between architectural design parameters and building performance is established, and based on this mapping, the optimal design parameters of the building are calculated. The research results have a certain reference value for architectural design optimization.
Read full abstract