Abstract
Accurately identifying the peak value of impact load acting on the helicopter structure during weapon launch is of great significance to the design and finalization of weapon pylons. Firstly, a method of standardized preprocessing load signal is proposed by analyzing the vibration response and the characteristics of the impact load. Then, the test model of the weapon pylon is designed, and the position of the strain gauge is determined; the static load calibration test and the ground impact test are carried out on the test model. Next, the time-domain response measured by the strain gauge is filtered and de-noised. Impact load is processed by a standardized method. The response and load are used to train BP neural network and the mapping relationship between response and load is established. The impact load generated by a specific weapon is statistically processed to obtain the normalized average load time history, and the identified standard load is converted back to the original load pattern. Finally, the network that meets the error requirements is tested. Both the standardized pattern and the original pattern have high identification accuracy, which shows that an effective load identification model can be established based on the time-domain response signal and the standardized processed load signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.