Due to the tendency for excessive moisture adsorption by raw, unprocessed biomass, various methods of biomass valorization are in use, allowing for the improvement of physical–chemical biomass properties, including hydrophobicity. One of the methods is torrefaction, which changes the hydrophilic properties of the biomass to hydrophobic. Therefore, in this study, the influence of the torrefaction temperature and the exposure time to moisture adsorption conditions on the hydrophobic properties of waste biomass from the agri-food industry (lemon peel, mandarin peel, grapefruit peel, and butternut-squash peel) were analyzed. The torrefaction was carried out at the following temperatures: 200, 220, 240, 260, 280, 300, and 320 °C. The hydrophobic properties were determined by using the EMC (Equilibrium Moisture Content) method, conducting an experiment in the climatic chamber at atmospheric pressure, a temperature of 25 °C, and relative humidity of 80%. The total residence time of the material in the climate chamber was 24 h. It was shown that the torrefaction process significantly improves the hydrophobic properties of waste biomass. Concerning dried raw (unprocessed) material, the EMC (24 h) coefficient was 0.202 ± 0.004 for lemon peels, 0.223 ± 0.001 for grapefruit peels, 0.237 ± 0.004 for mandarin peels, and 0.232 ± 0.004 for butternut squash, respectively. After the torrefaction process, the EMC value decreased by 24.14–56.96% in relation to the dried raw material, depending on the type of organic waste. However, no correlation between the improvement of hydrophobic properties and increasing the torrefaction temperature was observed. The lowest values of the EMC coefficient were determined for the temperatures of 260 °C (for lemon peel, EMC = 0.108 ± 0.001; for mandarin peel, EMC = 0.102 ± 0.001), 240 °C (for butternut-squash peel, EMC = 0.176 ± 0.002), and 220 °C (for grapefruit peel, EMC = 0.114 ± 0.008). The experiment also showed a significant logarithmic trend in the dependence of the EMC coefficient on the operating time of the climatic chamber. It suggests that there is a limit of water adsorption by the material and that a further increase of the exposure time does not change this balance.
Read full abstract