Abstract

A fully continuous flow synthesis of 3-chloro-4-oxopentyl acetate (2), an important intermediate for vitamin B1 (1), was developed. This continuous flow manufacturing included two chemical transformations and an inline extraction step without intermediate purification and solvent exchange. In this work, the traditional synthetic route for batch operation was efficiently simplified via a series of separated screening tests in flows under various conditions. We found that the chlorination reaction can be carried out in only 30 s at room temperature by flow. We also simplified the decarboxylation/acylation step by using a cross-mixer, so that acetic anhydride was no longer required in the acylation reaction. A computational fluid dynamics simulation was carried out to study the improved micromixing of liquid–liquid two-phase streams. Finally, 3-chloro-4-oxopentyl acetate (2) was obtained in a 90% isolated yield with a product purity of 96% and a total residence time of approximately 32 min. This fully continuous process was operated smoothly for 12 h, and approximately 19.1 g of the desired product was generated with a production rate of 1.79 g h–1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call