In this study, biogas power production and green hydrogen potential as an energy carrier are evaluated from biomass. Integrating an Organic Rankine Cycle (ORC) to benefit from the waste exhaust gases is considered. The power obtained from the ORC is used to produce hydrogen by water electrolysis, eliminate the H2S generated during the biogas production process and store the excess electricity. Thermodynamic and thermoeconomic analyses and optimization of the designed Combined Heat and Power (CHP) system for this purpose have been performed. The proposed study contains originality about the sustainability and efficiency of renewable energy resources. System design and analysis are performed with Engineering Equation Solver (EES) and Aspen Plus software. According to the results of thermodynamic analysis, the energy and exergy efficiency of the existing power plant is 28.69% and 25.15%. The new integrated system's energy, exergy efficiencies, and power capacity are calculated as 41.55%, 36.42%, and 5792 kW. The total hydrogen production from the system is 0.12412 kg/s. According to the results of the thermoeconomic analysis, the unit cost of the electricity produced in the existing power plant is 0.04323 $/kWh. The cost of electricity and hydrogen produced in the new proposed system is determined as 0.03922 $/kWh and 0.181 $/kg H2, respectively.