Abstract

The conversion of lignite to clean energy has won considerable attention and plays an important role in achieving the goal of carbon reduction. The effects of corn straw on hydrogen production from lignite was explored by using lignite as the substrate and corn straw as an exogenous substance. The fermentation mechanism was elucidated through the analysis of total and daily hydrogen production; the concentration of humic acid, benzoic acid, pyruvate, and glucose, as well as pH value. In addition, total solid (TS), and volatile solid (VS) from activated sludge before and after fermentation are examined. The results showed that corn straw could accelerate hydrogen production from lignite with an optimal content of corn straw of 40%. The fermentative hydrogen production with 40% corn straw was up to 186.20 mL, 3.40 times higher than that of the control group. Corn straw effectively improved the concentration of humic acid and benzoic acid, accelerating the anaerobic fermentation of lignite to produce hydrogen. The concentration of pyruvic acid, glucose, pH, and the changes in TS and VS before and after fermentation showed that the group of 40% corn straw had a better promotion effect than other systems for hydrogen production. This provides a new idea for improving hydrogen production through lignite anaerobic fermentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call