Mature microRNAs (miRNAs) are closely associated with cell proliferation and differentiation, stress response, and carcinogenesis, and monitoring intracellular miRNAs can contribute to the studies of their regulatory roles and molecular mechanisms of disease progression. However, accurate and reliable detection of mature miRNAs in complex physiological environments encounters the challenge of undesired detection accuracy ascribed to the coexistence of their precursor microRNAs (pre-miRNAs) and degradation of sensing probes. Here, we demonstrate the synthesis of a new size-discriminative DNA nanocage framework (DNF) for the sensitive monitoring of mature miRNA-21 in living cells with high accuracy via cascaded toehold-mediated strand displacement reaction (TSDR) amplifications. The DNF is prepared by a simple self-assembly of six ssDNAs, and the signal probes are docked inside the DNF. Because of its rigid framework structure, the DNF shows enhanced enzyme stability. Upon entering cells, only the short target mature miRNA-21 sequences instead of the large-sized pre-miRNAs are allowed to be accommodated inside the cavity of the DNF owing to the size-discriminative capability of the DNF. The cascaded TSDR amplifications can thus be activated by the mature miRNA-21 together with endogenous ATP to result in magnified fluorescence for sensitive detection and selective discrimination of miRNA-21 from the interference pre-miRNAs. Our results indicate that the DNF probes can offer robust sensing means for detecting various intracellular mature miRNAs with high accuracy for disease diagnoses and biomedical studies.
Read full abstract