Abstract

In nature, dynamic interactions between enzymes play a crucial role in defining cellular metabolism. By controlling the spatial and temporal organization of these supramolecular complexes called metabolons, natural metabolism can be tuned in a highly dynamic manner. Here, we repurpose the CRISPR-Cas6 family proteins as a synthetic strategy to create dynamic metabolons by combining the ease of RNA processing and the predictability of RNA hybridization for protein assembly. By disturbing RNA-RNA networks using toehold-mediated strand displacement reactions, on-demand assembly and disassembly are achieved using both synthetic RNA triggers and mCherry messenger RNA. Both direct and 'Turn-On' assembly of the pathway enzymes tryptophan-2-monooxygenase and indoleacetamide hydrolase can enhance indole-3-acetic acid production by up to ninefold. Even multimeric enzymes can be assembled to improve malate production by threefold. By interfacing with endogenous mRNAs, more complex metabolons may be constructed, resulting in a self-responsive metabolic machinery capable of adapting to changing cellular demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.