Abstract

Cellular uptake of biomolecules is crucial for regulating cell function. However, powerful and biocompatible tools for dynamically manipulating the cell entry of single-stranded DNAs (ssDNAs) remain elusive. Herein, we constructed synthetic DNA circuits on the cell membrane to program the cell entry of ssDNAs, using toehold-mediated DNA strand displacement reactions. We found that the dimerization and trimerization of cholesterol-ssDNAs enhanced membrane-anchoring and cellular uptake of ssDNAs. Moreover, we demonstrated that de-dimerization and de-trimerization of cholesterol-ssDNAs could be accomplished by inputting recovery ssDNAs into the synthetic DNA circuits, which could simultaneously decrease the cellular uptake of ssDNAs. We speculate that operating the synthetic DNA circuits on the cell membrane will be a powerful strategy for regulating the cellular uptake of exogenous materials, which has important implications for bioimaging, drug delivery, and gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.