Abstract The bark of Pinus radiata offers an underutilized source of high-value renewable chemicals such as extractable polyphenols and lipophilic compounds (waxes and suberin). Here, the depolymerization and extraction of suberin from P. radiata bark and its repolymerization to form novel polyesters are reported. Three different strategies were evaluated for repolymerization of the suberin monomers, with starting materials and products characterized using chemical and thermal analysis techniques. The inclusion of comonomer (1,12-dodecanediol) to provide stoichiometric balance improved the conversion, product yield, solubility and increased molecular weight. Enzymatic polymerization conditions gave the highest yield, while the highest molecular weight was achieved using titanium butoxide, demonstrating that polymerization conditions could be varied to target desired product properties. Products were hydrophobic, as shown by contact angles, ϴ ≥ 90° after 30 s. This work highlights opportunities for utilizing suberin to add value to a P. radiata bark biorefinery concept. Potential future applications include its use as a starting material for novel bio-based polymers that can serve as water-repellent surfaces and coatings, replacing established products derived from fossil resources.
Read full abstract