Energy saving and emission reduction have become the consensus of global development. Electric construction machinery has drawn more and more attentions due to its zero emission and high efficiency. However, because of the installed capacity of the battery, the complex working conditions and the time-varying load of construction machinery, the working time of electric construction machinery is hard to estimate. It is important to accurately predict the remaining working time of the whole machine to ensure that the driver can reasonably arrange the operation time. In this paper, the electric loader is studied. To improve the estimation accuracy of the working time of electric loader, the typical working conditions are analyzed. The data of V-type working mode cycles of the actual experimental prototype are analyzed, which provides the basis for the segmentation of working conditions and the extraction of characteristic parameters. The fuzzy C-means clustering algorithm is used, an estimation method of operation energy consumption based on working condition identification is proposed. The results show that the energy consumption estimation method based on the motor average torque proposed in this paper has better estimation accuracy than the traditional estimation method based on the latest unit time energy consumption, which provides an idea for estimating the working time of electric loader and has certain practical significance.