Abstract

Tunnel Boring Machine always works in the changeable geologies with multiple drivers, which leads to severe vibration of the TBM main drive system and key component failures. The vibration characteristics of TBM under different working conditions and the vibration reduction analysis have important meanings. First of all, by considering the time-varying random loads of the cutters, the contact force of the gears, the stiffness of the main bearing, and the stiffness of the cylinders, a mechanical-hydraulic coupling nonlinear dynamic model of the TBM main drive system was built according to the assembly relationship and load transmission path of the main drive system. Secondly, the dynamic model of the TBM main drive system is verified by comparing the theoretical vibration with the real vibration of the TBM main drive system. The error of the vibration acceleration is 10% to 30%. Three typical loads are defined under typical working conditions, and the vibrations of the TBM main drive system under three typical loads were analyzed. Finally, the sensitivity analysis of the cylinder damping shows that the damping at the position of the propulsion cylinder has a great influence on the vibration of the TBM main drive system. The results show that when the damping coefficient is 2.5 × 106 N·s/m, the maximum reduction of axial acceleration of cutterhead is 0.64 g, and that of the main beam front section is 0.55 g. The variable damping coefficient vibration reduction strategies under three typical loads are verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call